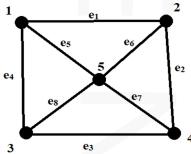
## 02000MAT206052101 APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY


Fourth Semester B.Tech Degree Examination July 2021 (2019 Scheme)

# Course Code: MAT206 Course Name: GRAPH THEORY

Max. Marks: 100 Duration: 3 Hours

# PART A

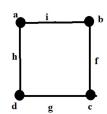
|   | (Answer all questions; each question carries 3 marks)                                         | Marks |
|---|-----------------------------------------------------------------------------------------------|-------|
| 1 | What is the maximum number of edges in a simple graph with n vertices?                        | 3     |
|   | Justify your answer.                                                                          |       |
| 2 | There are 25 telephones in Metropolis. Is it possible to connect them with wires              | 3     |
|   | so that each telephone is connected with exactly 7 others? Why?                               |       |
| 3 | Show that all vertices of an Euler graph G are of even degree                                 | 3     |
| 4 | Explain strongly connected and weakly connected graphs with the help of                       | 3     |
|   | examples.                                                                                     |       |
| 5 | Prove that a connected graph G with n vertices and n-1 edges is a tree.                       | 3     |
| 6 | How many labelled trees are there with n vertices? Draw all labelled trees with               | 3     |
|   | 3 vertices.                                                                                   |       |
| 7 | Define planar graphs. Is K <sub>4</sub> , the complete graph with 4 vertices, a planar graph? | 3     |
|   | Justify.                                                                                      |       |
| 8 | Define fundamental circuits and fundamental cut-sets.                                         | 3     |
| 9 | Construct the adjacency matrix and incidence matrix of the graph.                             | 3     |
|   | 1 2                                                                                           |       |

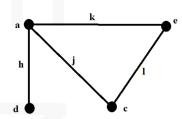


Define chromatic number. What is the chromatic number of a tree with two or more vertices?

# 02000MAT206052101

#### PART B


# (Answer one full question from each module, each question carries 14 marks)


#### Module -1

- 11 a) Define complete graph and complete bipartite graph. Draw a graph which is a complete graph as well as a complete bipartite graph.
  - b) Explain walks, paths and circuits with the help of examples.
- 12 a) Define isolated vertex, pendant vertex, even vertex and odd vertex. Draw a 7 graph that contains all the above.
  - b) Prove that simple graph with n vertices and k components can have at most 7 (n-k)(n-k+1)/2 edges.

# Module -2

13 a)





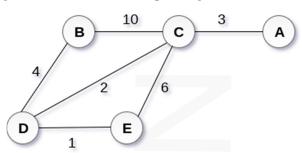
9

5

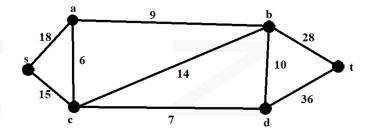
7

7

7


9

Find the union, intersection and ring sum of the above graphs.


- b) State travelling salesman problem. How it is related to Hamiltonian circuits?
- 14 a) Prove that in a complete graph with n vertices there are (n-1)/2 edge disjoint 7 Hamiltonian circuits, if n is an odd number and  $n \ge 3$ .
  - b) For which values of m, n is the complete graph  $K_{m,n}$  an Euler graph? Justify your answer.

#### Module -3

- 15 a) Prove that a binary tree with n vertices has (n+1)/2 pendant vertices.
  - b) Using Prims algorithm, find a minimal spanning tree for the following graph.

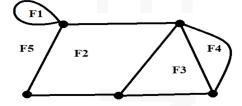


16 a) Write down Dijkstra's algorithm and use it to find the shortest path from s to t.



Prove that every tree has either one or two centers.

5


#### Module -4

17 Define cut-set. Prove that every circuit in G has an even number of edges in common with any cut-set.

Construct the geometric dual of the graph below

6

8



18 a) Prove that a connected planar graph with n vertices and e edges has e-n+2 9 regions.

5

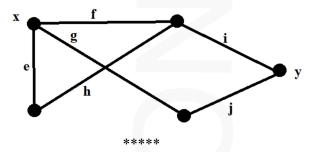
b) Let G be a connected graph and e an edge of G. Show that e is a cut-edge if and only if e belongs to every spanning tree.

### **Module -5**

Explain four colour problem using the concept of chromatic number.

5

b) Let B and A be the circuit matrix and the incidence matrix of a graph G which is free from loops, whose columns are arranged using the same order of edges. Show that  $AB^T = BA^T = 0 \pmod{2}$ .


9

Show that chromatic polynomial of a tree with n vertices is  $P_n(\lambda) =$ 20  $\lambda(\lambda-1)^{n-1}$ 

7

b) Define path matrix of a graph. Find the path matrix P(x, y) for the graph below.

7

